您现在的位置:新闻首页>汽车

囫囵吞枣(hú lún tūn zǎo)详情介绍!

2024-04-22编辑:admin(来源:原创/投稿/转载)


  前段时间,由清华叉院助理教授陈一镭提出的全新「破解格密码的量子算法」,一经发表便引发了业内轰动。然而就在最近,关键的第9步被发现有无法修复的bug,导致算法无法成立。

  一直以来,解决格上的近似最短向量问题(Lattice Problems)以及带错误学习问题(LWE),都是计算机领域的经典算法难题。

  前段时间,来自清华大学交叉信息研究院陈一镭助理教授,便针对这些问题提出了一种全新的「破解格密码的量子算法」。

  如着名密码学家N. P. Smart,就在第一时间发了篇博客文章,详细讨论了论文所带来的影响。

  具体来说,陈教授提出的这种多项式时间量子算法,主要用于求解具有特定多项式模数-噪声比的「带错误学习问题」(LWE)。

  通过结合Regev所提出的从网格问题到LWE的还原,便可以获得多项式时间量子算法,并可以在的近似因子内求解所有n维网格的决策最短向量问题(GapSVP)和最短独立向量问题(SIVP)。

  在此之前,还没有已知的多项式甚至亚指数时间量子算法可以在任何多项式近似因子内求解所有网格的GapSVP 或SIVP。

  首先,在量子算法的设计中引入具有复杂方差的高斯函数。特别是,利用复高斯函数离散傅里叶变换中的卡斯特波特征。

  基于此,便可以先将LWE实例转换为具有纯虚高斯振幅的量子态,然后将纯虚高斯态转换为LWE秘密和误差项的经典线性方程,最后利用高斯消元法求解线性方程组。

  但遗憾的是,Hongxun Wu(UC伯克利博二学生)和Thomas Vidick(量子领域专家)发现,算法的第9步实际上存在一个尚不能修复的bug。

  对此作者表示,希望像复高斯(Complex Gaussian)和窗口QFT(windowed QFT)这样的想法,会在量子计算中找到其他应用,而LWE问题或许会将有别的解决方法。

  其中,每次调用都会得到一个经典线性方程,其随机系数是中最短的向量(与LWE秘密向量和错误向量相关)。

  在调用完O(n)次之后,便可以得到一个全秩线性方程组,并通过高斯消元法计算出LWE秘密和错误项。

  在步骤8中,作者首先进行四次运算(可逆),然后进行部分测量,最后将四次运算反转。也就是说,需要在不折迭或修改φ7⟩的情况下,学习。

  步骤 9:从和φ8⟩中提取秘密的线⟩转换为秘密的经典线性方程,并最终得到主Lemma(3.8)的证明。

本文地址:http://www.mafwo.cn/SUVqiche/2024/hltz_h__l_n_t_n_z_o_xqjs__72866.html


  • 本网转载的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请联系我们进行修改或删除。